triesters, that are prepared from fats or oils or fat-forming acids that are derived from edible sources. The most prevalent fatty acids include lauric, linoleic, myristic, oleic, palmitic, and stearic. Mono- and diglycerides are manufactured by the reaction of glycerin with fatty acids or the reaction of glycerin with triglycerides in the presence of an alkaline catalyst. The products are further purified to obtain a mixture of glycerides, free fatty acids, and free glycerin that contains at least 90 percent-by-weight glycerides. - (b) The ingredient meets the specifications of the Food Chemicals Codex, 3d Ed. (1981), p. 201, which is incorporated by reference in accordance with 5 U.S.C. 552(a). Copies are available from the National Academy Press, 2101 Constitution Ave. NW., Washington, DC 20418, or available for inspection at the Office of the Federal Register, 800 North Capitol Street, NW., suite 700, Washington, DC 20005. - (c) In accordance with §184.1(b)(1), the ingredient is used in food with no limitation other than current good manufacturing practice. The affirmation of this ingredient as generally recognized as safe (GRAS) as a direct human food ingredient is based upon the following current good manufacturing practice conditions of use: - (1) The ingredient is used in food as a dough strengthener as defined in §170.3(o)(6) of this chapter; an emulsifier and emulsifier salt as defined in §170.3(o)(8) of this chapter; a flavoring agent and adjuvant as defined in §170.3(o)(12) of this chapter; a formulation aid as defined in §170.3(o)(14) of this chapter; a lubricant and release agent as defined in §170.3(o)(18) of this chapter; a solvent and vehicle as defined in §170.3(o)(27) of this chapter; a stabilizer and thickener as defined in §170.3(o)(28) of this chapter; a surfaceactive agent as defined in §170.3(o)(29) of this chapter; a surface-finishing agent as defined in §170.3(o)(30) of this chapter; and a texturizer as defined in $\S170.3(0)(32)$ of this chapter. - (2) The ingredient is used in food at levels not to exceed current good manufacturing practice. - (d) Prior sanctions for this ingredient different from the uses established in this section do not exist or have been waived. [54 FR 7403, Feb. 21, 1989, as amended at 57 FR 10616, Mar.27, 1992] ## §184.1521 Monosodium phosphate derivatives of mono- and diglycerides. - (a) Monosodium phophate derivatives of mono- and diglycerides are composed of glyceride derivatives formed by reacting mono- and diglycerides that are derived from edible sources with phosphorus pentoxide (tetraphosphorus decoxide) followed by neutralization with sodium carbonate. - (b) FDA is developing food-grade specifications for monosodium phosphate mono- and diglycerides in cooperation with the National Academy of Sciences. In the interim, this ingredient must be of a purity suitable for its intended use. - (c) In accordance with §184.1(b)(1), the ingredient is used in food with no limitation other than current good manufacturing practice. The affirmation of this ingredient as generally recognized as safe (GRAS) as a direct human food ingredient is based upon the following current good manufacturing practice conditions of use: - (1) The ingredient is used in food as an emulsifier and emulsifier salt as defined in §170.3(o)(8) of this chapter, a lubricant and release agent as defined in §170.3(o)(18) of this chapter, and as a surface-active agent as defined in §170.3(o)(29) of this chapter. - (2) The ingredient is used in the following foods at levels not to exceed current good manufacturing practice: dairy product analogs as defined in §170.3(n)(10) of this chapter and soft candy as defined in §170.3(n)(38) of this chapter. - (d) Prior sanctions for this ingredient different from the uses established in this section do not exist or have been waived. [54 FR 7404, Feb. 21, 1989] ## §184.1530 Niacin. (a) Niacin ($C_6H_5NO_2$, CAS Reg. No. 59–67–6) is the chemical 3-pyridinecarboxylic acid (nicotinic acid). It is a non-hygroscopic, stable, white, crystalline solid that sublimes without decomposition at about 230 °C.